47.2.1 problem 1

Internal problem ID [7417]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : 1
Date solved : Monday, January 27, 2025 at 02:53:41 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x -y+\left (x +y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 24

dsolve((x-y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \tan \left (\operatorname {RootOf}\left (2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_{1} \right )\right ) x \]

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 34

DSolve[(x-y[x])+(x+y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\arctan \left (\frac {y(x)}{x}\right )+\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+1\right )=-\log (x)+c_1,y(x)\right ] \]