47.2.16 problem 16

Internal problem ID [7432]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : 16
Date solved : Monday, January 27, 2025 at 02:57:04 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Riccati]

\begin{align*} x^{2}+y x +y^{2}&=x^{2} y^{\prime } \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 11

dsolve((x^2+x*y(x)+y(x)^2)=x^2*diff(y(x),x),y(x), singsol=all)
 
\[ y = \tan \left (\ln \left (x \right )+c_{1} \right ) x \]

Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 13

DSolve[(x^2+x*y[x]+y[x]^2)==x^2*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x \tan (\log (x)+c_1) \]