44.4.40 problem 22

Internal problem ID [7053]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 22
Date solved : Wednesday, March 05, 2025 at 04:04:14 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2}-y^{3} \end{align*}

Maple. Time used: 0.091 (sec). Leaf size: 20
ode:=diff(y(x),x) = y(x)^2-y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-x -1}}{c_{1}}\right )+1} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 7
ode=D[y[x],x]==y[x]^2-y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \]
Sympy. Time used: 0.340 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)**3 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ x + \log {\left (y{\left (x \right )} - 1 \right )} - \log {\left (y{\left (x \right )} \right )} + \frac {1}{y{\left (x \right )}} = C_{1} \]