47.2.26 problem 26

Internal problem ID [7442]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : 26
Date solved : Monday, January 27, 2025 at 02:59:43 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} -y+x y^{\prime }&=\sqrt {x^{2}+y^{2}} \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 26

dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)
 
\[ \frac {-c_{1} x^{2}+y+\sqrt {x^{2}+y^{2}}}{x^{2}} = 0 \]

Solution by Mathematica

Time used: 0.308 (sec). Leaf size: 13

DSolve[x*D[y[x],x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x \sinh (\log (x)+c_1) \]