4.20.29 Problems 2801 to 2900

Table 4.959: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

16131

\[ {} y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

16132

\[ {} y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16133

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16134

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

16135

\[ {} y^{\prime \prime }+16 y = 0 \]

16136

\[ {} y^{\prime \prime }+8 y = 0 \]

16137

\[ {} y^{\prime \prime }+7 y = 0 \]

16138

\[ {} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16139

\[ {} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16140

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16141

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16142

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

16143

\[ {} 3 y^{\prime \prime }-y^{\prime } = 0 \]

16144

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16145

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16146

\[ {} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16147

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16148

\[ {} y^{\prime \prime }+36 y = 0 \]

16149

\[ {} y^{\prime \prime }+100 y = 0 \]

16150

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16151

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16152

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16153

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16154

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

16155

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

16156

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

16157

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

16158

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16159

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16160

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16163

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16164

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16165

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16166

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16167

\[ {} y^{\prime \prime }-16 y = 0 \]

16168

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16171

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16172

\[ {} y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

16173

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

16174

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

16175

\[ {} y^{\prime \prime }-y = 2 t -4 \]

16176

\[ {} y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

16177

\[ {} y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

16178

\[ {} y^{\prime \prime }+y = \cos \left (2 t \right ) \]

16179

\[ {} y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

16180

\[ {} y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

16181

\[ {} y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

16182

\[ {} y^{\prime \prime } = 3 t^{4}-2 t \]

16183

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

16184

\[ {} y^{\prime \prime }+y^{\prime }-2 y = -1 \]

16185

\[ {} 5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

16186

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

16187

\[ {} 16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

16188

\[ {} y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

16189

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

16190

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

16191

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

16192

\[ {} y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

16193

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

16194

\[ {} y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

16195

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

16196

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

16197

\[ {} y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

16198

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

16199

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

16200

\[ {} y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

16201

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16202

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16203

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16204

\[ {} y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

16205

\[ {} y^{\prime \prime }+3 y^{\prime } = 18 \]

16206

\[ {} y^{\prime \prime }-y = 4 \]

16207

\[ {} y^{\prime \prime }-4 y = 32 t \]

16208

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]

16209

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 3 t \]

16210

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]

16211

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]

16212

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]

16213

\[ {} y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]

16214

\[ {} y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]

16215

\[ {} y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]

16216

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16217

\[ {} y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

16218

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16219

\[ {} y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ -2 \pi +2 t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16220

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16226

\[ {} y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

16227

\[ {} x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

16228

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

16229

\[ {} y^{\prime \prime }+4 y = 1 \]

16230

\[ {} y^{\prime \prime }+16 y^{\prime } = t \]

16231

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

16232

\[ {} y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

16233

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

16234

\[ {} y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16235

\[ {} y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

16236

\[ {} y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

16237

\[ {} y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

16238

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

16239

\[ {} y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]