47.2.45 problem Example 6

Internal problem ID [7461]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : Example 6
Date solved : Monday, January 27, 2025 at 03:01:06 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 2 x y^{\prime } \left (x -y^{2}\right )+y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.025 (sec). Leaf size: 28

dsolve(2*x*diff(y(x),x)*(x-y(x)^2)+y(x)^3=0,y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{\frac {c_{1}}{2}}}{\sqrt {-\frac {{\mathrm e}^{c_{1}}}{x \operatorname {LambertW}\left (-\frac {{\mathrm e}^{c_{1}}}{x}\right )}}} \]

Solution by Mathematica

Time used: 2.894 (sec). Leaf size: 60

DSolve[2*x*D[y[x],x]*(x-y[x]^2)+y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -i \sqrt {x} \sqrt {W\left (-\frac {e^{c_1}}{x}\right )} \\ y(x)\to i \sqrt {x} \sqrt {W\left (-\frac {e^{c_1}}{x}\right )} \\ y(x)\to 0 \\ \end{align*}