Internal
problem
ID
[7475]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.3.
Exact
equations
problems.
page
24
Problem
number
:
2
Date
solved
:
Monday, January 27, 2025 at 03:01:35 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]
\begin{align*} \frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime }&=0 \end{align*}
Time used: 0.006 (sec). Leaf size: 16
Time used: 60.211 (sec). Leaf size: 1025
\begin{align*}
y(x)\to \frac {\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {8 c_1}{\sqrt [3]{3} \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}-\frac {2 \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}{3^{2/3}}-\frac {4 \sqrt {6} \log (x)}{\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}} \\
y(x)\to \frac {1}{2} \left (\frac {\sqrt {\frac {2 \sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-8\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}{\sqrt {3}}+\sqrt {\frac {8 c_1}{\sqrt [3]{3} \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}-\frac {2 \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}{3^{2/3}}-\frac {4 \sqrt {6} \log (x)}{\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}}\right ) \\
y(x)\to -\frac {\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {8 c_1}{\sqrt [3]{3} \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}-\frac {2 \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}{3^{2/3}}+\frac {4 \sqrt {6} \log (x)}{\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}} \\
y(x)\to \frac {1}{2} \left (\sqrt {\frac {8 c_1}{\sqrt [3]{3} \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}-\frac {2 \sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}{3^{2/3}}+\frac {4 \sqrt {6} \log (x)}{\sqrt {\frac {\sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}}-\frac {\sqrt {\frac {2 \sqrt [3]{3} \left (9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}\right ){}^{2/3}-8\ 3^{2/3} c_1}{\sqrt [3]{9 \log ^2(x)+\sqrt {81 \log ^4(x)+192 c_1{}^3}}}}}{\sqrt {3}}\right ) \\
\end{align*}