47.4.10 problem 58

Internal problem ID [7487]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number : 58
Date solved : Monday, January 27, 2025 at 03:02:02 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 29

dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{1} \sin \left (\frac {\sqrt {15}\, \ln \left (x \right )}{2}\right )+c_{2} \cos \left (\frac {\sqrt {15}\, \ln \left (x \right )}{2}\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 42

DSolve[x^2*D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_2 \cos \left (\frac {1}{2} \sqrt {15} \log (x)\right )+c_1 \sin \left (\frac {1}{2} \sqrt {15} \log (x)\right )}{\sqrt {x}} \]