4.20.34 Problems 3301 to 3400

Table 4.969: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

17488

\[ {} y^{\prime \prime }+4 y = 0 \]

17489

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17492

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17493

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17504

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17505

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17506

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17507

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17508

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17509

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17510

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17511

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17512

\[ {} 6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17513

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17514

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

17515

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

17516

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

17517

\[ {} 4 y^{\prime \prime }-9 y = 0 \]

17518

\[ {} 25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

17519

\[ {} y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

17520

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

17521

\[ {} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

17522

\[ {} y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

17523

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

17524

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17525

\[ {} 9 y^{\prime \prime }-24 y^{\prime }+16 y = 0 \]

17526

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

17527

\[ {} 4 y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

17528

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

17529

\[ {} y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

17530

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

17531

\[ {} y^{\prime \prime }+16 y = 0 \]

17532

\[ {} 9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

17533

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17534

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

17535

\[ {} 6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

17536

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

17537

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

17538

\[ {} y^{\prime \prime }+3 y^{\prime } = 0 \]

17539

\[ {} y^{\prime \prime }+y = 0 \]

17540

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17541

\[ {} y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

17542

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

17543

\[ {} 2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

17544

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

17545

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

17546

\[ {} 4 y^{\prime \prime }-y = 0 \]

17560

\[ {} y^{\prime \prime }+2 y = 0 \]

17561

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0 \]

17562

\[ {} m y^{\prime \prime }+k y = 0 \]

17563

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t} \]

17564

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

17565

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t} \]

17566

\[ {} y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

17567

\[ {} y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6 \]

17568

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t} \]

17569

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t} \]

17570

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

17571

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

17572

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

17573

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right ) \]

17574

\[ {} y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right ) \]

17575

\[ {} u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right ) \]

17576

\[ {} y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right ) \]

17577

\[ {} y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

17578

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 2 t \]

17579

\[ {} y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t} \]

17580

\[ {} y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4 \]

17581

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t} \]

17582

\[ {} y^{\prime \prime }+4 y = 3 \sin \left (2 t \right ) \]

17583

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \]

17584

\[ {} y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

17585

\[ {} y^{\prime \prime }+y = t \left (\sin \left (t \right )+1\right ) \]

17586

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

17587

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

17588

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

17589

\[ {} y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

17590

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

17591

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right ) \]

17592

\[ {} y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

17597

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{-t +\pi } & \pi <t \end {array}\right . \]

17598

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

17599

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

17600

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]

17601

\[ {} y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]

17602

\[ {} y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]

17603

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]

17604

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]

17605

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]

17608

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

17609

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

17610

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

17611

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

17612

\[ {} y^{\prime \prime }+y = \tan \left (t \right ) \]

17613

\[ {} y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

17614

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

17615

\[ {} y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

17616

\[ {} 4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

17617

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

17618

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]