48.2.8 problem Example 3.26

Internal problem ID [7524]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page 147
Problem number : Example 3.26
Date solved : Monday, January 27, 2025 at 03:04:29 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u&=f \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 259

dsolve(p*x^2*diff(u(x),x$2)+q*x*diff(u(x),x)+r*u(x)=f(x),u(x), singsol=all)
 
\[ u = \frac {x^{\frac {-q +p +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} c_{2} \sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}+x^{-\frac {q -p +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} c_{1} \sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}+x^{\frac {-q +p +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} \left (\int x^{-\frac {3 p -q +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} f \left (x \right )d x \right )-x^{-\frac {q -p +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} \left (\int x^{\frac {-3 p +q +\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}}{2 p}} f \left (x \right )d x \right )}{\sqrt {p^{2}+\left (-2 q -4 r \right ) p +q^{2}}} \]

Solution by Mathematica

Time used: 1.216 (sec). Leaf size: 342

DSolve[p*x^2*D[u[x],{x,2}]+q*x*D[u[x],x]+r*u[x]==f[x],u[x],x,IncludeSingularSolutions -> True]
 
\[ u(x)\to x^{-\frac {\sqrt {p} \sqrt {r} \sqrt {\frac {p^2-2 p (q+2 r)+q^2}{p r}}-p+q}{2 p}} \left (x^{\frac {\sqrt {r} \sqrt {\frac {p^2-2 p (q+2 r)+q^2}{p r}}}{\sqrt {p}}} \int _1^x\frac {f(K[2]) K[2]^{\frac {-3 p-\sqrt {r} \sqrt {\frac {p^2-2 (q+2 r) p+q^2}{p r}} \sqrt {p}+q}{2 p}}}{\sqrt {p} \sqrt {r} \sqrt {\frac {p^2-2 (q+2 r) p+q^2}{p r}}}dK[2]+\int _1^x-\frac {f(K[1]) K[1]^{\frac {-3 p+\sqrt {r} \sqrt {\frac {p^2-2 (q+2 r) p+q^2}{p r}} \sqrt {p}+q}{2 p}}}{\sqrt {p} \sqrt {r} \sqrt {\frac {p^2-2 (q+2 r) p+q^2}{p r}}}dK[1]+c_2 x^{\frac {\sqrt {r} \sqrt {\frac {p^2-2 p (q+2 r)+q^2}{p r}}}{\sqrt {p}}}+c_1\right ) \]