44.6.34 problem 34

Internal problem ID [7178]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 34
Date solved : Wednesday, March 05, 2025 at 04:20:07 AM
CAS classification : [_linear]

\begin{align*} x \left (x +1\right ) y^{\prime }+x y&=1 \end{align*}

With initial conditions

\begin{align*} y \left ({\mathrm e}\right )&=1 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 15
ode:=x*(1+x)*diff(y(x),x)+x*y(x) = 1; 
ic:=y(exp(1)) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\ln \left (x \right )+{\mathrm e}}{x +1} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 15
ode=x*(x+1)*D[y[x],x]+x*y[x]==1; 
ic={y[Exp[1]]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\log (x)+e}{x+1} \]
Sympy. Time used: 0.277 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x + 1)*Derivative(y(x), x) + x*y(x) - 1,0) 
ics = {y(E): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\log {\left (x \right )} + e}{x + 1} \]