48.4.22 problem Problem 3.35

Internal problem ID [7564]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page 218
Problem number : Problem 3.35
Date solved : Monday, January 27, 2025 at 03:06:16 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +y^{\prime } y+y-x y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(x+y(x)*diff(y(x),x)+y(x)-x*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_{1} \right )\right ) x \]

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 36

DSolve[x+y[x]*D[y[x],x]+y[x]-x*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+1\right )-\arctan \left (\frac {y(x)}{x}\right )=-\log (x)+c_1,y(x)\right ] \]