49.4.13 problem 3(d)

Internal problem ID [7624]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 52
Problem number : 3(d)
Date solved : Monday, January 27, 2025 at 03:07:56 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y \left (\frac {\pi }{2}\right )&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 5

dsolve([diff(y(x),x$2)+y(x)=0,y(0) = 0, y(1/2*Pi) = 0],y(x), singsol=all)
 
\[ y = 0 \]

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 6

DSolve[{D[y[x],{x,2}]+y[x]==0,{y[0]==0,y[Pi/2]==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to 0 \]