45.2.32 problem 32

Internal problem ID [7255]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 32
Date solved : Wednesday, March 05, 2025 at 04:22:02 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 42
Order:=6; 
ode:=x*(x-1)*diff(diff(y(x),x),x)+3*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_{1} x^{4} \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (-144-96 x -48 x^{2}+48 x^{4}+96 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.043 (sec). Leaf size: 55
ode=x*(x-1)*D[y[x],{x,2}]+3*D[y[x],x]-2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^4}{3}+\frac {x^2}{3}+\frac {2 x}{3}+1\right )+c_2 \left (5 x^8+4 x^7+3 x^6+2 x^5+x^4\right ) \]
Sympy. Time used: 0.971 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 1)*Derivative(y(x), (x, 2)) - 2*y(x) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x^{4} \left (\frac {2 x}{5} + 1\right ) + O\left (x^{6}\right ) \]