45.3.10 problem 10

Internal problem ID [7268]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page 250
Problem number : 10
Date solved : Wednesday, March 05, 2025 at 04:22:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 35
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(2*x^2-64)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_{1} x^{8} \left (1-\frac {1}{18} x^{2}+\frac {1}{720} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (-27360196043587190784000000-1954299717399085056000000 x^{2}-81429154891628544000000 x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{8}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 46
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(2*x^2-64)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^{12}}{720}-\frac {x^{10}}{18}+x^8\right )+c_1 \left (\frac {1}{x^8}+\frac {1}{14 x^6}+\frac {1}{336 x^4}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (2*x**2 - 64)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None