49.13.2 problem 1(b)

Internal problem ID [7678]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 121
Problem number : 1(b)
Date solved : Monday, January 27, 2025 at 03:09:43 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 12

dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],singsol=all)
 
\[ y = x \left (c_{2} \ln \left (x \right )+c_{1} \right ) \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 15

DSolve[x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x (c_2 \log (x)+c_1) \]