49.15.4 problem 1(d)

Internal problem ID [7690]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 130
Problem number : 1(d)
Date solved : Monday, January 27, 2025 at 03:09:53 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 29

Order:=6; 
dsolve(diff(y(x),x$2)+x^3*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {x^{4}}{12}\right ) y \left (0\right )+\left (x -\frac {1}{10} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 28

AsymptoticDSolveValue[D[y[x],{x,2}]+x^3*D[y[x],x]+x^2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (x-\frac {x^5}{10}\right )+c_1 \left (1-\frac {x^4}{12}\right ) \]