49.15.7 problem 3

Internal problem ID [7693]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 130
Problem number : 3
Date solved : Monday, January 27, 2025 at 03:09:56 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 14

Order:=6; 
dsolve([(1+x^2)*diff(y(x),x$2)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{6} x^{3}+\frac {7}{120} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 19

AsymptoticDSolveValue[{(1+x^2)*D[y[x],{x,2}]+y[x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {7 x^5}{120}-\frac {x^3}{6}+x \]