Internal
problem
ID
[7314]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.3.
Extended
Power
Series
Method:
Frobenius
Method
page
186
Problem
number
:
12
Date
solved
:
Wednesday, March 05, 2025 at 04:23:09 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+6*x*diff(y(x),x)+(4*x^2+6)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+6*x*D[y[x],x]+(4*x^2+6)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 6*x*Derivative(y(x), x) + (4*x**2 + 6)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)