49.17.3 problem 1(c)

Internal problem ID [7710]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number : 1(c)
Date solved : Monday, January 27, 2025 at 03:10:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Order:=8; 
dsolve(x^2*diff(y(x),x$2)-5*diff(y(x),x)+3*x^2*y(x)=0,y(x),type='series',x=0);
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.040 (sec). Leaf size: 106

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-5*D[y[x],x]+3*x^2*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (\frac {339 x^7}{8750}+\frac {49 x^6}{1250}+\frac {18 x^5}{625}+\frac {3 x^4}{50}+\frac {x^3}{5}+1\right )+c_2 e^{-5/x} \left (-\frac {302083 x^7}{218750}+\frac {5243 x^6}{6250}-\frac {357 x^5}{625}+\frac {113 x^4}{250}-\frac {49 x^3}{125}+\frac {6 x^2}{25}-\frac {2 x}{5}+1\right ) x^2 \]