49.17.8 problem 2(b)

Internal problem ID [7715]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number : 2(b)
Date solved : Monday, January 27, 2025 at 03:10:28 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 38

Order:=8; 
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} x \left (1-\frac {1}{6} x^{2}+\frac {1}{120} x^{4}-\frac {1}{5040} x^{6}+\operatorname {O}\left (x^{8}\right )\right )+c_{2} \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{720} x^{6}+\operatorname {O}\left (x^{8}\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 76

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^{11/2}}{720}+\frac {x^{7/2}}{24}-\frac {x^{3/2}}{2}+\frac {1}{\sqrt {x}}\right )+c_2 \left (-\frac {x^{13/2}}{5040}+\frac {x^{9/2}}{120}-\frac {x^{5/2}}{6}+\sqrt {x}\right ) \]