Internal
problem
ID
[7353]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
7
Date
solved
:
Wednesday, March 05, 2025 at 04:23:54 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+7*diff(y(t),t)+12*y(t) = 21*exp(3*t); ic:=y(0) = 7/2, D(y)(0) = -10; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+7*D[y[t],t]+12*y[t]==21*Exp[3*t]; ic={y[0]==32/10,Derivative[1][y][0] ==62/10}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(12*y(t) - 21*exp(3*t) + 7*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 7/2, Subs(Derivative(y(t), t), t, 0): -10} dsolve(ode,func=y(t),ics=ics)