49.22.8 problem 1(h)

Internal problem ID [7754]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number : 1(h)
Date solved : Monday, January 27, 2025 at 03:12:05 PM
CAS classification : [_linear]

\begin{align*} 3 x^{2} \ln \left (x \right )+x^{2}+y+x y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 17

dsolve((3*x^2*ln(x)+x^2+y(x))+x*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \frac {-x^{3} \ln \left (x \right )+c_{1}}{x} \]

Solution by Mathematica

Time used: 0.040 (sec). Leaf size: 19

DSolve[(3*x^2*Log[x]+x^2+y[x])+x*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {-x^3 \log (x)+c_1}{x} \]