47.1.7 problem 7

Internal problem ID [7388]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.1 Separable equations problems. page 7
Problem number : 7
Date solved : Wednesday, March 05, 2025 at 04:25:02 AM
CAS classification : [_separable]

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 19
ode:=(x^2-1)*diff(y(x),x)+2*x*y(x)^2 = 0; 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {1}{-i \pi +\ln \left (x -1\right )+\ln \left (x +1\right )+1} \]
Mathematica. Time used: 0.175 (sec). Leaf size: 26
ode=(x^2-1)*D[y[x],x]+2*x*y[x]^2==0; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {i}{i \log \left (x^2-1\right )+\pi +i} \]
Sympy. Time used: 0.259 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + (x**2 - 1)*Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{- \log {\left (x^{2} - 1 \right )} - 1 + i \pi } \]