Internal
problem
ID
[7388]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.1
Separable
equations
problems.
page
7
Problem
number
:
7
Date
solved
:
Wednesday, March 05, 2025 at 04:25:02 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=(x^2-1)*diff(y(x),x)+2*x*y(x)^2 = 0; ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2-1)*D[y[x],x]+2*x*y[x]^2==0; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**2 + (x**2 - 1)*Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)