Internal
problem
ID
[7394]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.1
Separable
equations
problems.
page
7
Problem
number
:
13
Date
solved
:
Wednesday, March 05, 2025 at 04:25:19 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = (3*x^2+4*x+2)/(-2+2*y(x)); ic:=y(0) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(3*x^2+4*x+2)/(2*(y[x]-1)); ic={y[0]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (3*x**2 + 4*x + 2)/(2*y(x) - 2),0) ics = {y(0): -1} dsolve(ode,func=y(x),ics=ics)