50.1.7 problem 1(h)

Internal problem ID [7779]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number : 1(h)
Date solved : Tuesday, January 28, 2025 at 03:16:39 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} x y^{\prime }+y&=y^{\prime } \sqrt {1-x^{2} y^{2}} \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 27

dsolve(x*diff(y(x),x)+y(x)=diff(y(x),x)*sqrt(1-x^2*y(x)^2),y(x), singsol=all)
 
\[ \arctan \left (\frac {x y}{\sqrt {1-x^{2} y^{2}}}\right )-y+c_{1} = 0 \]

Solution by Mathematica

Time used: 0.371 (sec). Leaf size: 93

DSolve[x*D[y[x],x]+y[x]==D[y[x],x]*Sqrt[1-x^2*y[x]^2],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {\sqrt {-\left (x^2 y(x)^2-1\right )^2}}{x (x y(x)-1)}-\frac {y(x) \sqrt {1-x^2 y(x)^2} \text {arcsinh}\left (x \sqrt {-y(x)^2}\right )}{\sqrt {-y(x)^2} \sqrt {x^2 y(x)^2-1}}=c_1,y(x)\right ] \]