Internal
problem
ID
[7413]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.1
Separable
equations
problems.
page
7
Problem
number
:
32
Date
solved
:
Wednesday, March 05, 2025 at 04:27:14 AM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=diff(y(x),x) = 2*(2*x+y(x)+1)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==2*Sqrt[2*x+y[x]+1]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*sqrt(2*x + y(x) + 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)