Internal
problem
ID
[7457]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
39
Date
solved
:
Wednesday, March 05, 2025 at 04:38:32 AM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _dAlembert]
ode:=(diff(y(x),x)+1)*ln((x+y(x))/(x+3)) = (x+y(x))/(x+3); dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x]+1)*Log[(y[x]+x)/(x+3)]==(y[x]+x)/(x+3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((Derivative(y(x), x) + 1)*log((x + y(x))/(x + 3)) - (x + y(x))/(x + 3),0) ics = {} dsolve(ode,func=y(x),ics=ics)