Internal
problem
ID
[7467]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
47
Date
solved
:
Wednesday, March 05, 2025 at 04:39:03 AM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=2*x*diff(y(x),x)+y(x) = y(x)^2*(x-x^2*y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=2*x*D[y[x],x]+y[x]==y[x]^2*Sqrt[x-x^2*y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) - sqrt(-x**2*y(x)**2 + x)*y(x)**2 + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(x*(-x*y(x)**2 + 1))*y(x) - 1)*y(x)/(2*x) cannot be solved by the factorable group method