Internal
problem
ID
[7852]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
1.
What
is
a
differential
equation.
Section
1.5.
Exact
Equations.
Page
20
Problem
number
:
3
Date
solved
:
Monday, January 27, 2025 at 03:26:30 PM
CAS
classification
:
[_exact, _rational]
Time used: 0.011 (sec). Leaf size: 20
Time used: 60.181 (sec). Leaf size: 1210
\begin{align*}
y(x)\to -\frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
\end{align*}