50.4.15 problem 15

Internal problem ID [7864]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20
Problem number : 15
Date solved : Monday, January 27, 2025 at 03:28:05 PM
CAS classification : [_separable]

\begin{align*} x \ln \left (y\right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 28

dsolve((x*ln(y(x))+x*y(x))+(y(x)*ln(x)+x*y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ \int \frac {x}{x +\ln \left (x \right )}d x +\int _{}^{y}\frac {\textit {\_a}}{\ln \left (\textit {\_a} \right )+\textit {\_a}}d \textit {\_a} +c_{1} = 0 \]

Solution by Mathematica

Time used: 47.920 (sec). Leaf size: 54

DSolve[(x*Log[y[x]]+x*y[x])+(y[x]*Log[x]+x*y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {K[1]}{K[1]+\log (K[1])}dK[1]\&\right ]\left [\int _1^x-\frac {K[2]}{K[2]+\log (K[2])}dK[2]+c_1\right ] \\ y(x)\to W(1) \\ \end{align*}