Internal
problem
ID
[7487]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.2
problems.
page
95
Problem
number
:
58
Date
solved
:
Wednesday, March 05, 2025 at 04:39:55 AM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)