47.4.10 problem 58

Internal problem ID [7487]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number : 58
Date solved : Wednesday, March 05, 2025 at 04:39:55 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 29
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} \sin \left (\frac {\sqrt {15}\, \ln \left (x \right )}{2}\right )+c_{2} \cos \left (\frac {\sqrt {15}\, \ln \left (x \right )}{2}\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.033 (sec). Leaf size: 42
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \cos \left (\frac {1}{2} \sqrt {15} \log (x)\right )+c_1 \sin \left (\frac {1}{2} \sqrt {15} \log (x)\right )}{\sqrt {x}} \]
Sympy. Time used: 0.206 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sin {\left (\frac {\sqrt {15} \log {\left (x \right )}}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {15} \log {\left (x \right )}}{2} \right )}}{\sqrt {x}} \]