Internal
problem
ID
[7490]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.3.4
problems.
page
104
Problem
number
:
1
Date
solved
:
Wednesday, March 05, 2025 at 04:40:02 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 2*x*exp(x)-1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+x*D[y[x],x]+y[x]==2*x*Exp[x]-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*exp(x) + x*Derivative(y(x), x) + y(x) + Derivative(y(x), (x, 2)) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x*exp(x) - y(x) - Derivative(y(x), (x, 2)) - 1)/x cannot be solved by the factorable group method