50.5.6 problem 1(f)

Internal problem ID [7876]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 1(f)
Date solved : Monday, January 27, 2025 at 03:30:10 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x -y-\left (x +y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.036 (sec). Leaf size: 51

dsolve((x-y(x))-(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {-c_{1} x -\sqrt {2 x^{2} c_{1}^{2}+1}}{c_{1}} \\ y &= \frac {-c_{1} x +\sqrt {2 x^{2} c_{1}^{2}+1}}{c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.464 (sec). Leaf size: 94

DSolve[(x-y[x])-(x+y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x-\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -x+\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -\sqrt {2} \sqrt {x^2}-x \\ y(x)\to \sqrt {2} \sqrt {x^2}-x \\ \end{align*}