50.5.10 problem 1(j)

Internal problem ID [7880]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 1(j)
Date solved : Monday, January 27, 2025 at 03:30:30 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{3}+y^{3}-x y^{2} y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 56

dsolve((x^3+y(x)^3)-(x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= \left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} x \\ y &= -\frac {\left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} \left (1+i \sqrt {3}\right ) x}{2} \\ y &= \frac {\left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 63

DSolve[(x^3+y[x]^3)-(x*y[x]^2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to -\sqrt [3]{-1} x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to (-1)^{2/3} x \sqrt [3]{3 \log (x)+c_1} \\ \end{align*}