Internal
problem
ID
[7525]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.29
Date
solved
:
Wednesday, March 05, 2025 at 04:44:05 AM
CAS
classification
:
[_Lienard]
ode:=sin(x)*diff(diff(u(x),x),x)+2*cos(x)*diff(u(x),x)+sin(x)*u(x) = 0; dsolve(ode,u(x), singsol=all);
ode=Sin[x]*D[u[x],{x,2}]+2*Cos[x]*D[u[x],x]+Sin[x]*u[x]==0; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") u = Function("u") ode = Eq(u(x)*sin(x) + sin(x)*Derivative(u(x), (x, 2)) + 2*cos(x)*Derivative(u(x), x),0) ics = {} dsolve(ode,func=u(x),ics=ics)
NotImplementedError : The given ODE (u(x) + Derivative(u(x), (x, 2)))*tan(x)/2 + Derivative(u(x), x) cannot be solved by the factorable group method