Internal
problem
ID
[7537]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.42
Date
solved
:
Wednesday, March 05, 2025 at 04:44:23 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 50*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==50*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - 50*exp(2*x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)