50.8.5 problem 1(e)

Internal problem ID [7921]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number : 1(e)
Date solved : Monday, January 27, 2025 at 03:32:22 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{x^{2}-y^{2}} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 34

dsolve(diff(y(x),x)=(x^2+y(x)^2)/(x^2-y(x)^2),y(x), singsol=all)
 
\[ y = \operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {\textit {\_a}^{2}-1}{\textit {\_a}^{3}+\textit {\_a}^{2}-\textit {\_a} +1}d \textit {\_a} +\ln \left (x \right )+c_{1} \right ) x \]

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 67

DSolve[D[y[x],x]==(x^2+y[x]^2)/(x^2-y[x]^2),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}^2-\text {$\#$1}+1\&,\frac {\text {$\#$1} \log \left (\frac {y(x)}{x}-\text {$\#$1}\right )-\log \left (\frac {y(x)}{x}-\text {$\#$1}\right )}{3 \text {$\#$1}-1}\&\right ]=-\log (x)+c_1,y(x)\right ] \]