Internal
problem
ID
[7542]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.47
Date
solved
:
Wednesday, March 05, 2025 at 04:44:33 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+(1+2/(3*x+1)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*D[y[x],x]+(1+2/(1+3*x)^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 + 2/(3*x + 1)**2)*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False