48.3.18 problem Example 3.47

Internal problem ID [7542]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page 181
Problem number : Example 3.47
Date solved : Wednesday, March 05, 2025 at 04:44:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+(1+2/(3*x+1)^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (3 x +1\right )^{{1}/{3}} \left (\left (3 x +1\right )^{{1}/{3}} c_{2} +c_{1} \right ) \]
Mathematica. Time used: 0.053 (sec). Leaf size: 35
ode=D[y[x],{x,2}]+2*D[y[x],x]+(1+2/(1+3*x)^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \sqrt [3]{3 x+1} \left (c_2 \sqrt [3]{3 x+1}+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 + 2/(3*x + 1)**2)*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False