Internal
problem
ID
[7547]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.6
Summary
and
Problems.
Page
218
Problem
number
:
Problem
3.6
Date
solved
:
Wednesday, March 05, 2025 at 04:44:47 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=y(x)*(x^2*y(x)^2+1)+(x^2*y(x)^2-1)*x*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2*y[x]^2+1)*y[x]+(x^2*y[x]^2-1)*x*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2*y(x)**2 - 1)*Derivative(y(x), x) + (x**2*y(x)**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)