48.4.11 problem Problem 3.18

Internal problem ID [7553]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page 218
Problem number : Problem 3.18
Date solved : Wednesday, March 05, 2025 at 04:45:24 AM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\begin{align*} a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \end{align*}

Maple. Time used: 0.082 (sec). Leaf size: 173
ode:=a*diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x) = (1+diff(diff(y(x),x),x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{2} i x^{2}+c_{1} x +c_{2} \\ y &= \frac {1}{2} i x^{2}+c_{1} x +c_{2} \\ y &= \frac {\left (2 a^{2}+\left (x +c_{1} \right )^{2}\right ) \sqrt {-a^{2}+c_{1}^{2}+2 c_{1} x +x^{2}}-3 a \left (a \left (x +c_{1} \right ) \ln \left (x +c_{1} +\sqrt {\left (c_{1} +a +x \right ) \left (c_{1} -a +x \right )}\right )-2 c_{2} x -2 c_3 \right )}{6 a} \\ y &= \frac {\left (-2 a^{2}-\left (x +c_{1} \right )^{2}\right ) \sqrt {-a^{2}+c_{1}^{2}+2 c_{1} x +x^{2}}+3 a \left (a \left (x +c_{1} \right ) \ln \left (x +c_{1} +\sqrt {\left (c_{1} +a +x \right ) \left (c_{1} -a +x \right )}\right )+2 c_{2} x +2 c_3 \right )}{6 a} \\ \end{align*}
Mathematica. Time used: 11.588 (sec). Leaf size: 209
ode=a*D[y[x],{x,2}]*D[y[x],{x,3}]==Sqrt[1+ D[y[x],{x,2}]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt {a^2 \left (-1+c_1{}^2\right )+2 a c_1 x+x^2} \left (a^2 \left (2+c_1{}^2\right )+2 a c_1 x+x^2\right )}{6 a}-\frac {1}{2} a (x+a c_1) \log \left (\sqrt {a^2 \left (-1+c_1{}^2\right )+2 a c_1 x+x^2}+a c_1+x\right )+c_3 x+c_2 \\ y(x)\to -\frac {\sqrt {a^2 \left (-1+c_1{}^2\right )+2 a c_1 x+x^2} \left (a^2 \left (2+c_1{}^2\right )+2 a c_1 x+x^2\right )}{6 a}+\frac {1}{2} a (x+a c_1) \log \left (\sqrt {a^2 \left (-1+c_1{}^2\right )+2 a c_1 x+x^2}+a c_1+x\right )+c_3 x+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), (x, 2))*Derivative(y(x), (x, 3)) - sqrt(Derivative(y(x), (x, 2))**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out