49.1.1 problem 1 (a)

Internal problem ID [7580]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.3 Introduction– Linear equations of First Order. Page 38
Problem number : 1 (a)
Date solved : Wednesday, March 05, 2025 at 04:46:55 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&={\mathrm e}^{3 x}+\sin \left (x \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x) = exp(3*x)+sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{3 x}}{3}-\cos \left (x \right )+c_{1} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 21
ode=D[y[x],x]==Exp[3*x]+Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{3 x}}{3}-\cos (x)+c_1 \]
Sympy. Time used: 0.204 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(3*x) - sin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {e^{3 x}}{3} - \cos {\left (x \right )} \]