50.9.33 problem 5(i)

Internal problem ID [7969]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number : 5(i)
Date solved : Monday, January 27, 2025 at 03:34:23 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-16 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 15

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-16*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{2} x^{8}+c_{1}}{x^{4}} \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_2 x^8+c_1}{x^4} \]