50.10.1 problem 1(a)

Internal problem ID [7970]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number : 1(a)
Date solved : Monday, January 27, 2025 at 03:34:25 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 25

dsolve(diff(y(x),x$2)+3*diff(y(x),x)-10*y(x)=6*exp(4*x),y(x), singsol=all)
 
\[ y = \frac {\left ({\mathrm e}^{9 x}+3 \,{\mathrm e}^{7 x} c_{2} +3 c_{1} \right ) {\mathrm e}^{-5 x}}{3} \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 31

DSolve[D[y[x],{x,2}]+3*D[y[x],x]-10*y[x]==6*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {e^{4 x}}{3}+c_1 e^{-5 x}+c_2 e^{2 x} \]