50.10.4 problem 1(d)

Internal problem ID [7973]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number : 1(d)
Date solved : Monday, January 27, 2025 at 03:34:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 30

dsolve(diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=25*x^2+12,y(x), singsol=all)
 
\[ y = {\mathrm e}^{x} \sin \left (2 x \right ) c_{2} +{\mathrm e}^{x} \cos \left (2 x \right ) c_{1} +5 x^{2}+4 x +2 \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 35

DSolve[D[y[x],{x,2}]-2*D[y[x],x]+5*y[x]==25*x^2+12,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to 5 x^2+4 x+c_2 e^x \cos (2 x)+c_1 e^x \sin (2 x)+2 \]