50.11.2 problem 1(b)

Internal problem ID [7986]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 1(b)
Date solved : Monday, January 27, 2025 at 03:35:39 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-x} \ln \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 30

dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)*ln(x),y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{-x} \left (2 \ln \left (x \right ) x^{2}+4 c_{1} x -3 x^{2}+4 c_{2} \right )}{4} \]

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 36

DSolve[D[y[x],{x,2}]+2*D[y[x],x]+y[x]==Exp[-x]*Log[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{4} e^{-x} \left (-3 x^2+2 x^2 \log (x)+4 c_2 x+4 c_1\right ) \]