50.11.7 problem 2(a)

Internal problem ID [7991]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 2(a)
Date solved : Monday, January 27, 2025 at 03:35:58 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 22

dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)
 
\[ y = -\ln \left (\sec \left (x \right )\right ) \cos \left (x \right )+\cos \left (x \right ) c_{1} +\sin \left (x \right ) \left (x +c_{2} \right ) \]

Solution by Mathematica

Time used: 0.020 (sec). Leaf size: 22

DSolve[D[y[x],{x,2}]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (x+c_2) \sin (x)+\cos (x) (\log (\cos (x))+c_1) \]