Internal
problem
ID
[7618]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
52
Problem
number
:
1(g)
Date
solved
:
Wednesday, March 05, 2025 at 04:48:16 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=diff(diff(y(x),x),x)+(-1+3*I)*diff(y(x),x)-3*I*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(3*I-1)*D[y[x],x]-3*I*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(complex(-1, 3)*Derivative(y(x), x) + complex(0, -3)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)