50.11.18 problem 5(c)

Internal problem ID [8002]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 5(c)
Date solved : Monday, January 27, 2025 at 03:36:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y&=\left (1-x \right )^{2} \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 16

dsolve((1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=(1-x)^2,y(x), singsol=all)
 
\[ y = c_{2} x +{\mathrm e}^{x} c_{1} +x^{2}+1 \]

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 22

DSolve[(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==(1-x)^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x^2+x-c_2 x+c_1 e^x+1 \]