49.4.13 problem 3(d)

Internal problem ID [7624]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 52
Problem number : 3(d)
Date solved : Wednesday, March 05, 2025 at 04:48:28 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y \left (\frac {\pi }{2}\right )&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 5
ode:=diff(diff(y(x),x),x)+y(x) = 0; 
ic:=y(0) = 0, y(1/2*Pi) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.013 (sec). Leaf size: 6
ode=D[y[x],{x,2}]+y[x]==0; 
ic={y[0]==0,y[Pi/2]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 0 \]
Sympy. Time used: 0.084 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, y(pi/2): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 0 \]