Internal
problem
ID
[7624]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
52
Problem
number
:
3(d)
Date
solved
:
Wednesday, March 05, 2025 at 04:48:28 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = 0; ic:=y(0) = 0, y(1/2*Pi) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==0; ic={y[0]==0,y[Pi/2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, y(pi/2): 0} dsolve(ode,func=y(x),ics=ics)